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NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

TECHNICAL NOTE D-1920

ANALYSIS OF AXISYMMETRIC, ROTATING
PRESSURIZED FILAMENTARY STRUCTURES
By

O. R. Burggraf and H. U, Schuerch

SUMMARY / 5/‘) 3

An analytic treatment of the equilibrium configurations for thin-walled,
axisymmetric, rotating, filamentary pressure vessels is presented. Solu-
tions in the form of tabulated elliptical integral functions are developed for
the pertinent geometrical characteristics of the structural shapes and for
their associated filamentary geometries. A morphological review of the
corresponding structures is presented, based upon a discussion of the math-
ematical properties of the solutions,

Experimental realization of the equilibrium configuration of a single
filament subject to a centrifugal force field confirms the validity of analytic
expressions.

Applications of formulas to problems of external loadings and of the
static stability of filamentary, pressure stabilized structures demonstrate
the utility of the analytical technique.

INTRODUCTION

The use of filamentary structures is of continually increasing interest
for applications requiring ultimate structural performance, and is made
possible by exploiting the remarkable physical properties of materials in
the form of thin, continuous fibers. Theories for stresses and deformations
in such structures are based upon two basically different approaches: anal-
ysis from the point of view of reinforced, anisotropic shell theory or, al-
ternatively, from considerations of individual filaments.



With the first method, stresses in the matrix material are easily ac-
commodated, thus allowing great generality. A fundamental treatment of
this type of problem is given by Green & Adkins {Reference 1) in a chapter
on reinforced materials. A similar treatment applied to orthotropic ma-
terials is given, for instance, by Harmon in Reference 2.

With the second method, the matrix material usually is assumed to be
completely compliant, the tension in the filament being the dominant load
carrying stress in the structure. The filament analysis, though more re-
stricted, is simpler to apply and more readily yields usable information,
Thus, the case of filament wound structures, subject to pure pressure load-
ing, has been analyzed in detail. The resulting concept of monotropic mem-
branes as structural elements, and their analytic treatment, has been pre-
sented by the authors in Reference 3. The special case of isotensoid struc-
tures, representing an optimum design configuration due to the uniformity
of filament stress, has been discussed by Hoffman and Schuerch in Refer-
ences 4 and 5, and for the special case of filament wound pressure vessel
end closures, by Zickel in Reference 6.

In many proposed applications of filamentary structures, centrifugal
loading of the filaments is expected to be important. The basic equilibrium
conditions for combined pressure and centrifugal loading were given in Ref-
erence 3; however, in further analysis of the filament geometry, only pres-
sure loading was considered. The present report is concerned with analyz-
ing the effects of centrifugal loading on filament wound pressurized struc-
tures.

In contrast to Reference 3, wherein numerical results were obtained
by integrating the equilibrium equations on a digital computer, the present
report gives the results in the form of analytic expressions involving tabu-
lated functions. The results of Reference 3 may be obtained from these
formulas as a special case. As a further distinction, the basic differential
equations for monotropic membranes were developed in Reference 3 from
differential geometrical considerations of lines on surfaces without initial
restriction to surfaces of revolution. An alternate derivation of the equilib-
rium condition for the Particularly interesting case of surfaces of revolution
is given here for the sake of completeness.
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LIST OF SYMBOLS

= smﬁ0
elliptic integrals of second kind

elliptic integrals of the first kind

see equation (17c)
integral defined by equation (20)
2
m
2 P To

= T ; pressure parameter

modulus of elliptic integral
filament length

= L/ro

filament mass per unit length
number of windings

force on filament

pressure (po = pressure at r = ro)
radius from axis of symmetry

equatorial radius
=r/r
o

tension in filament
tension at r = ro

:f{2

see equations (17)



LIST OF SYMBOLS (Continued)

vy see equation (16)
z distance along axis of symmetry
Z =z/r
o
o angle between tangent to meridian curve and z axis
B helix angle
Ao(tb , k) Heuman Lambda Function, see equation (27)
2 2 c e . .
Mny.o , k), Mo, k) elliptic integrals of third kind
© central angle
2 2 . :
Q m'r "W /To , centrifugal loading parameter
w angular velocity
p density of fluid



I. BASIC DIFFERENTIAL EQUATIONS

A, Eguilibrium Conditions

Consider a uniformly spaced array of n filaments placed on a surface
of revolution as shown in Figure 1. If the spacing is small, the filaments
will constitute a structure that can be described as a monotropic membrane
(Reference 3). Assume this structure to be subject to loads generated by an
internal positive pressure p , and by rotation with angular velocity @
around the z-axis. Assume further that a non-structural liner contains the
internal pressure and distributes the pressure loads equally among the fila-
ments without further contribution to the load carrying function of the struc-
ture.

Now consider an individual filament as a completely flexible but axially
stiff structural element. To determine filament shape, apply 3 independent
equilibrium conditions: (1) equilibrium of torques about the z-axis; (2)
equilibrium of forces in the z direction; and (3) equilibrium of forces
parallel to the filament. To apply these equilibrium conditions, the corre-
sponding force components are needed. Referring to Figure 2 for notation,
the components of the tension in the filament are simply

T(P = T sinB {la)
Tz = T cosP costt (1b)
Tr = T cosB sina . (lc)

The pressure force affects only the equilibrium of forces in the z
direction. The angular separation between adjacent filaments is 27/n ,
where n is the number of filaments crossing the plane 2=0 . Hence the
distance separating the filaments at radius r is just 2fr/n , and the z
components of the pressure force on a filament per differential increment
of radius is given by

aN = 2TBT 4. | (2)
z n

The centrifugal force affects only the equilibrium condition along the
axis of the filament, so that only the component parallel to the filament is
needed. The centrifugal force for a length d{ of filament of linear density
m' is

dN = m'rwzdL

where W is the angular velocity of the filament about the z-axis. This



radial vector resolves parallel to the filament to give

dNT = (m' r of dt) sintx cosf
Since the element of length d{ resolves along the radius vector according
to

dt sindcosf = -dr ,

the component of centrifugal force parallel to the filament is given by

dNT = -m'rwzdr . (3)

With these expressions for the force components, the equilibrium
conditions are now readily obtained. Since only the tension in the filament
produces a torque about the z-axis, equilibrium in torque requires that
rTy be constant along the filament, or

TrsinB = T r sinf | (4)

where the constant has been evaluated at z=0 . * For equilibrium of
forces in the z direction, only the filament tension and pressure force
contribute. Hence, from equations (1b) and (2),

di-(T cosB cost) = 2Tpr . (5)
r n

The final condition of equilibrium of forces parallel to the filament
involves only filament tension and centrifugal force. From equation (3)
there results

g%— = -m'rw2 . (6)

B. Filament Orientation

Equation (6) may be integrated immediately to give

a r2
(T/T) = 1+3(1-=5) (7)
r
o
where {8=m' r 2 052/T
o )
* For isotensoids (T=const.) , equation (4) was obtained in Reference 3

from consideration of geodesic curves on a surface of revolution.
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The constant of integration was evaluated at z=0 . Introducing non-
dimensional coordinates R=r/ro and Z=z/r, , and the abbreviated nota-
tion C=sinB, , the azimuth angle B of the filament on its surface of revo-
lution obtained from equation (4) becomes

sinf = C. . (8)

1 2, 1
Rl:l +'£Q(1-R)J

Finally, the integral of equation (5) is expressed as

r
.0

. 2m
T cosB cos® = To cosBo + o J pr dr (9)

r

(Note that a,=0 since z=0 is taken as the plane of symmetry). If the
pressurizing fluid has density pP;y , then the steady state pressure dis-
tribution is that for solid body rotation:

] L, (22
P = po + 2 pf r s (10)
where pgy is the pressure on the axis of rotation. With this result, the

integral in equation (9) may be evaluated. Thus, with K=2Tpyro/nT, ,
equation (9) reduces to

2
P r
T - 1 - r® [ 1f o 2
T cosfB cosa = cosﬁ0 > K(l RY)I1 + 3 > (1+R ):]
o o
(11)
Using equations (7) and (8), T and 8 may be eliminated:
2
P wzr
A\ -cf - srO-RH[1 4 %—fp—°(1+R2)]
cosdt = 2. (12)

2
\/[1 + % a (1-Rz):]2- ;%

C. Filament Geometry

Although the orientation of the filament is determined completely
by equations (8) and (12), its location in space is yet to be deterrnined.
The angles denoted in Figure 2 may be defined by the relations



dZ cosd

g _ L = 95
IR cotoe , (13a)
2
\/1 - cos Q
Rg% = - tanB/sino SZ”‘B =— (13b)
V(l - sin B){1l - cos &)

Thus, from equations (8), (12), and (13a) the meridian curve must satisfy

(14)

P"}r 2

2 1 f

1-C -—K(l-RZ)[1+—1-
2 4
dZ = % o

dR :
\/[I’L%Q‘I'RZ)]Z = - {\/ - gR0-R[1eg pf E LR 25

Similarly, from equations (8), )12), and (13b) the central angle ¢ must satisfy

(1+R2)]

(15)
do L c/r?
- T
N [1+-1-(‘J(1-Rz)]2 e { 1-¢c? - lK(1-RZ)|:1+ff—w—r—°—— 1+R2)]}2
2 RZ 2 P,

The differential equations (14) and (15) completely determine the
filament curves in space. The radicand in the denominators is a fifth-

degree polynomial in RZ . Hence, the integrals for Z and ¢

2 2

(R7) (R7)

are hyperelliptic integrals of class 2; evaluation of such integrals usually
requires either numerical integration or complicated series expansion.
However, closed form solutions in terms of tabulated functions may be
obtained if the parameter (pf wZ roz/po) is set equal to zero, corresponding
to a structure pressurized by a light fluid (or gas). The effect of centrifugal
force then affects the filament geometry only through the parameter & .
With this simplification, the radicand in the denominators becomes a cubic

in R2 , and the integrals reduce to ordinary elliptic integrals. In the fol-

lowing, only the case (t)f wZ roz/p° = 0) will be considered.



II. INTEGRATION OF EQUATIONS

A. The Factored Cubic

The differential equations for the meridian curve and the central angle

both contain as a denominator the quantity
(16)

y = \/(Kz-ﬂz)x3 - 4[0(1+%) + k{‘\/l-cz-%)]xz + 4[(1+92)2 -(j /1-c2--I§)‘7‘]x-4c2 ,

where x=‘R2 , and where (pf wZ roz/po) has been set equal to zero. To

facilitate integration of the equations, the factored form of the radicand is
preferred. One root of the cubic radicand is x1=1 corresponding to the

previous choice of 2=0 as plane of symmetry. Dividing out this root from
the radicand leaves the quadratic

(K2-0%)x2% + 4[K\ f1-c® + Q- %(KZ-QZ)]x-4CZ

The remaining two roots of the cubic are

2 2, 2,2 a2
x, = -5 H-'\/H +C” (K" - "} , (17a)
2 <% . al { }
_ 2 2. 2 2 a2
% = {u +\/H +c® k- a%} (17b)

where
H = K\/l-CZ+Q-%(KZ-QZ) : (17¢)

Thus, in factored form

y =‘\/(K2 - 02)(1 - xHx - xz)(x - x3) . (18)

The particular ordering of the roots indicated in equation (18) is not
the only possible choice. Altogether, there are 24 permutations of the
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inequality Xq < x, < x <1 providing positive values of the radicand (12 for

K>8 and 12 for K< {}) . However, most of these permutations do not
correspond to physically realizable values of &, K, and C for rotating,
pressurized structures. A critical examination of equations (17) for the

roots x, and X3 outlined in Appendix A, reveals the following theorems

which determine the acceptability of a given permutation of the roots:

Theorem A. For K>, x, 20 and Xy S 0 for all physically

realizable values of K, §}, and C .

Theorem B. For K<, X, 20 , Xy > X, and also X, >1 for

all physically realizable values of K, {}, and C

In addition, the initial condition Z=0 at x=1 provides the condition: x and 1
cannot be separated by X, or X,

Application of these criteria shows that the only physically realizable
orderings of the roots are the following:

Case A: K28, x3<x2<x<1 (19a)
Case B: K>Q, x3<1<x<x2 (19b)
Case C: K<, x2<x<1<x3 (19¢)
Case D: K<, 1<x <x2 <x3 (19d)

A discussion of the physical significance of these distinct cases is de-
ferred until the section on morphology of the structures. For the present,
it is merely noted that the analytical form of the solution may be different
for each of these four cases.

B. Meridian Curve

From the condition of axial symmetry, the filaments form a surface
which may be considered to be generated by rotating a curve in a meridian
plane (@ =const.) around the z axis. The slope of this meridian curve is
given by equation (14), which reduces to (pf= 0)

4z l‘[( VI-CZ-E) +-I§x
o \/ [1 +—n(1 -x)]2 - ct. '\/1 - —-(1 _x)]z




With y defined by equation (16), introduce the notation

l n
_ x dx
Jn(x) - J y ) (20)

X

The meridian curve is given in terms of the J-integrals:

- K /). a2 _K
Zx) T i:[(2 1 C)Jo(x) le(x)]

The J-integrals are evaluated in Appendix B for each of the four cases of
equations (19). For Cases A and D, the meridian curves are given by

(21)

) ] 2
Zy " — [K(l-x3) - \1-¢ ]F(w,kl) - K(1-x,) E(zbl,kl)} )
\/(; el )(l-x3)

where

. _ l-x _ 2
51n¢>1 = l-xz and k1 1-x3

For the other two cases, the modulus k , becomes imaginary. Hence
for Cases B and C, the alternate form of the integrals is used:

{-[K(l-x3) - z‘\/l-cz][p(kz)-r(zpz ,kz)]

(22)

Z =%
(x) V 2 2
(K -Q )(xz-x3)

+ Kix,-x )| E(k,) - B0, 100 ]}

where
X, =X x. -1
sinlb2 = 2_1 and k2 = xz-x
*2 273
An exceptional case remains for consideration: K=§{ . By con-

sidering the limiting behavior of equations (17), the roots of the cubic are



found to go as

2
Lim X, = c R (23a)
K~Q aua AN -ch
Lim x, = #® . (23b)
K-Q

Consider the form of solution given by equation (21}; then
Lim \/(KZ-QZ)(I-x3) = 2\/T(I+ l-C2 ),
K-Q

K-Q

and

With the series expansions of the elliptic integrals

)
F{, k) I dy ¢+ik2(w-sinlbcoslb)+- - -,

° "\/1 - %% sin" %

y
I 1 - k2 sinY db 1
o

¢-Zk2(w-sin¢cos¢))+- - -,

E(®, k)

and with the above limiting values, the solution for K= is found to be
(24)
Z ==&

1 8. A/1- 2 -\/T:_Q i -
\/;(—E——/:_CT) {[4 (1 xz) 1-C ]arc sin l-xz 4\/(1 x)(x xz)} ,

where x, is given by equations (23) above. For C=0 (meridian wrapped

filaments) equation (24) reduces to

Z ={ ! (1-"1;9)arc sin Vl-x-f-%V.Z_EVx(l-x)} . (25)

280

Equation (24) has been verified as the integral of equation (14) for K=
(with pf= 0) by direct differentiation.
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C. Central Angle

If the parameter C is not zero, the filament will advance around the
z-axis as it is wound. The central angle ¢ (see Figure 2) is determined by

integrating equation (15). In terms of the variable x=R2 , and for pf= o,
this equation reduces to

do _ C/2

op + —_—
x\/x[l+%ﬂ(1 -x)]?‘ - Cz-x[ 1-¢? - %K(l -x)]2

dx
In terms of the J-integrals defined by equation (20), the central angle is
given by

o = tc] - tci m . (26)

As shown in Appendix B, the integral J involves the incomplete elliptic

1
integral of the third kind, which in turn involves Theta functions. These
functions are tabulated in Reference 9, or alternatively can be evaluated

by means of an infinite series. The complete integral may be evaluated in
terms of Heuman's Lambda Function, Ao as in Appendix B, which is tabu-

lated in Reference 7, for example. Ao is given in terms of the elliptic

integrals of first and second kinds by (27)

A W0 = [E® - Foo]Fe,xh) + Foo E@, k), K1 =01 -k

Thus for Case A (equation 19a), using equations (B-6) and (B-13), we obtain

} e
@ = % Ao(ﬁl,kl) , (28a)

x,)
2 '\/ - X,X, (K2 - 02)

where

S1n€1

For Case B, using equations (B-11) and (B-13)

Oy = F uge A€, .k, (28b)

x.,)
2 ‘\/- x,%, x% - 0%
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where

-x x. -1
. 3 2
s1n§2 - v 1 - xg ’ k2 - V X, = X, ’

For Case C, using equations (B-11) and (B-14)

2F(k_)
C 2 m
Oy = 7 { + —T— A m,k)} . (280)

) 5
*2 QZ _ KZ x3\/x3 - x, j’x2x3

where
/x - X 1l -x
sim?, = 2=, k, = Vﬁ y
*3 37 %

For Case D, using equations (B-6) and (B-14)

= +

¢(x2) , (284d)

where

For the exceptional case K=§ , the incomplete integral may be eval-
uated in simple terms. Consider the central angle for Case A. Since

k1 -0 in the limit as K=§l , we find (refer to Appendix B)

¥

1
nE ,a 2:0) = I SR = S — arctan[ l-aztantb] .
1’71 1-aZ sinky > Vo5 1
o , sin l-al

Substituting into equation (26), by use of equation (B-6) and the limiting for-
mulas given in equations (23) and following, the central angle is obtained as

tanp = C 1 -x . (29)
[0(1 #\/1 - c?) x - CZJ

This formula evidently applies for all four cases of equations (19), in the
limit K={ . By letting x"x2 in equation (29), we observe that @—=7/2 ;

that is, in passing from outer radius to inner radius, the filament is
wound a quarter turn about the z axis for the case K=& , for any C#0 .




15

D. Filament Length

The space curve generated by a filament is completely determined by
Z(R) and (p(R) However, for many purposes the filament length is

needed also. For example, to determine how a given filament-wound struc-
ture will deform under various combinations of pressure and centrifugal
loading, the filament length and advance angle (central angle ¢ per turn)
must be held invariant. An expression for filament length is easily derived.

From Figure 2, the differential element of length dL (normalized
with respect to equatorial radius T, ) is given by

dL cosB cosax = dZ

Then, from equations (8), (12), and (14), with pf=0 ,

1 1
(1+ZQ) - ZQx

& o . , (30)
dx y
where y is given by equation (16). Interms of J-integrals
1 1 ]
= % = - = . 1
L [a+sa)s -2a5, (31)
Hence, for Cases A and D, equations (19), substituting for J and J1
from Appendix B, the filament length is given by (32)
- : | : B
A N {zFw, . k) + AU-x)[F k) - E®) k)
‘\/(K -0%)(1-x,)
where
smlb 1-x and k
l-x2

For Cases B and C, equations (19), the alternate form of J'o and Jl
given in Appendix B should be used, resulting in the formula

(33)
1.
L = * {[2+Q(1-x3)]F($2,k2) - 0(x2-x3) E(Ibz.kz)}
‘\/(Kz-nzux -x,)
273
where X_-X x,-1
siny 1 and kzé 2
2

The exceptional case K=§} may be evaluated as a limiting process
as previously demonstrated for equation (24) for the meridian curve and
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equation (29) for the central angle, Thus in the limit as K~ , equa-
tion (32) takes the form
(34)

\\/70 {[1+—Q(1 -x ):l arc mn\/ 11 %, - -‘lzﬂ (l-x)(x-xz)}
(14 V1- C

with x, given by equation (23).
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JII. DISCUSSION OF RESULTS

A, Classification of Meridional Shapes

A morphology of axisymmetric filament-wound structures can be de-
veloped by discussing the range of possible solutions for the meridian given
in equations (21), (22), or (24). These equations show the meridional shape
to depend on the three characteristic parameters, K , @, and C , which
define the pressure load intensity, the centrifugal load intensity, and the
angularity of the winding pattern respectively.

For the purpose of this discussion, it will be assumed that both K and
2 are positive (or zero), corresponding to positive internal pressure and to
tensile rather than compressive forces acting in the filaments. The range of
possible solutions, then, can be grouped into two classes of periodic functions
according to their topological characteristics., The two classes can be de-
scribed as ''undulating" (Figure 3) and '"looped," (Figure 4). The corre-
sponding surfaces of revolution are of the nature of corrugated tubes and to-
roids respectively.

The two classes of meridional curves are separated by the transitional
case of a cusped function (Figure 3e) and bounded by a degenerate periodic
function which, in the case of the undulating species, assumes the shape of a
hyperbola, (Figure 3a); in the case of the looped species, it assumes the
shape of a single loop with asymptotic branches (Figure 4d).

Each class can be further grouped into two types. The undulating class
may be '"waisted" such that the reference radius ro is a minimum and R 21
(Figure 3b); or it may be ''bellied" such that the reference radius is a maxi-
mum and R=1 (Figure 3c). The transitional case for the two types is the
straight line R=1 , corresponding to the meridian of a right circular cyl-
inder (Figure 3c). The looped class may be '"progressive,'" (Figure 4a) such
that subsequent ordinates of R=1 follow at values of increasingly larger
positive Z if the curve is started at the coordinate R=1, Z=0 , and fol-
lowed in a direction of initially increasing Z ; or it may be '"regressive"
(Figure 4c) in the sense that subsequent ordinates of R=1 follow at in-
creasingly negative Z . The transitional case for these two types is the
closed loop forming the meridian of a smooth toroid (Figure 4b).

A summary of the possible meridional forms is given in Table I below.

TABLE I
Class: Undulating Looped
| Type: Waisted | Bellied Progressive | Regressive
Limiting
& Transi- | Hyper- Asymptotic
tion Case: | boloid Cylinder Cusp Toroid Loop
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A discussion of the transition cases is useful in defining the domains
of existence of the various types inthe K - C - §} space. By studying these
singular types, the ranges of K , §1 , and C corresponding to the various
classes of meridian curves may be established:

1. Hyperboloid

The hyperboloid corresponds to tension infinitely greater than the
pressure or centrifugal force. Hence the hyperboloid requires K=0 , Q=0

2, Cylinder

The cylinder is defined by constant radius which requires x, =1
This condition is analyzed in Appendix A, resulting in the condition

0 = cz- K‘\/l-c2 . (35)

Evidently for cylinders, £} cannot exceed unity for non-negative K

3. Cusp

The cusp divides the corrugated tubes from the progressive loops,
and requires the point of zero slope (x=x0) to coincide with the point of

infinite slope (x=x_) . This condition is analyzed in Appendix C, resulting
in the condition
2
\
o = —— { c -1} (36)
2 2 2
- -=\/1-
1-C 1 K C

Cusps occur for all values of @ ; inthe limit §d~® equation (36) reduces to

The limit £0#® may be viewed as the limit To"O and po"O such that K

remains constant. Then the radius of curvature is zero at x=1 and the fila-
ment lies along the radius.

4, Toroid

The closed loop divides the progressive loops from the regressive
loops and is defined by the condition Z(x )=O , where Z is given by equa-
2
tions (21) and (22). These equations are transcendental and an iterative
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technique must be used to determine closed loop conditions. * However, cer-
tain results may be obtained directly. For example, note that for C=1 ,
K=0 is a solution of Z(x )=0 for any £ . On the other hand, for large K,
2

series expansion of the terms in equation (21) results in the condition

c_’ﬁ’293+1 (37)

in the limit K-« ., These two points will be useful in interpreting the
behavior of the closed loop conditions for various values of § .

These classifications are summarized graphically in Figure 5, in
which the domains of each type curve are indicated on a plot of K vs C
with € as the parameter. The curves for =0 are identical to those of
Reference 3. The effects discussed above are evident in the graph. Thus,
cylinders are possible for 0 S} £1 while cusps are possible for all values
of 20

The character of the closed loop boundary is drastically different for
<1 thanfor §§>1 . For & %1 , the closed loop condition requires
K—-® for some C =1 , in accordance with equation (37). For §Q>1 ,
however, this asymptote no longer exists (C > 1) and the condition K=0
at C=1 for all £} now dominates the behavior of the closed loop boundary
for C near unity. In Figure 6, the closed loop boundaries are shown for
Q=1 , 1.1 ,1.2 , and 1.5 , clearly demonstrating this behavior.

B. Sample Results

Meridian curves are plotted in Figures 7 and 8 for the following cases:

() C=0 , K= = 4
(2) €C=0 , K=0, =4
(3) C=0.5, K= = 4
(4) C=0.5, K=0, =4

The value =4 was chosen for convenience. In particular, the value Z(O) =0

results for Case (1), Figure 7 shows the effect of pressure on a centrifugal

* For =0 , it is possible to express all parameters in terms of the mod-
ulus of the elliptic integrals as the only unknown, greatly reducing the la-
bor in calculating closed loop conditions.



loaded filamentary structure. In general a more convex shape results, as
expected. Note that the two curves of Figure 7 are not the same structure
since the filament length is different for the two cases. By scaling to the
same filament length, the equatorial radius would be different for the pres-
surized vs unpressurized structure. Figure 8 shows the same effect when
the filament is not meridian wrapped. The general shape of the meridian
curve is the same as for C=0 except in the vicinity of the axis. A central
hole must exist for any helix-wound filamentary structure since the filaments
cannot intersect the axis of rotation (except for C=0 ). Note that in Fig-
ure 8 the curve for K=0 is a corrugated tube and the curve for K=4 is a
regressive loop, as indicated by the domains in Figure 5.



Iv. EXPERIMENT

For the purpose of realizing the analytically predicted geometry of a
rotating filament, the simple case of K=0 , =4 and C=.5 was chosen,
This choice was made, since results from experimentation with non-rotating
pressure vessels (K >0, 2=0) has been reported by the authors previously
(Reference 3).

Non-dimensional ordinate Z , arc length L , and central angle ¢
were computed for the abscissa R=.4 from equations (22), (33), and (28c)
respectively, vielding:

Z = .46
L = .87
® = 29°

To generate the corresponding geometry, a metal chain of appropriate length
was supported on two disks with the attachment points rotated and spaced rel-
ative to each other by the indicated central angle and distance. The disks, in
turn, were supported by a quill mounted into the spindle of a modified lathe,
equipped with a variable speed drive. The test equipment with rotating chain
is shown in a time exposure photograph by Figure 9. A flash exposure photo-
graph of the same setup, revealing the instantaneous geometry assumed by
the chain, is shown in Figure 10.

The geometry of the rotating chain was recorded by photography, using
both flash and time exposures to obtain end view, side view, and envelope
contour of the rotating chain, Figures lla-c show typical records obtained
by this means. The reference grid shown on Figures lla and llc was ob-
tained by double exposure. For this purpose, the quill assembly was re-
moved from the fixture after the first exposure of the rotating chain on a
tripod-mounted Polaroid camera. An inked reference grid was then placed
into the appropriate normal or axial center plane of the body of revolution
generated by the revolving chain to minimize parallax errors. The camera
shutter was then tripped for the second exposure of the film,

A theoretical computation was made for the end view, side view, and
envelope contour {meridional shape) for the selected parameter triplet. The
results of this computation, together with experimental data points obtained
from the photographic records in Figures lla-c are shown in Figure 12, In
the process of data reduction, the side view of Figure 11b was corrected by
a geometrical rotation to compensate for a slight delay in the timing of the
exposure flash. All other data were obtained by directly plotting chain co-
ordinates evaluated from the photographs onto the graph in Figure 12. The
experimentally obtained data were found to agree with the theoretically pre-
dicted geometrical shapes within reading accuracy of the photographic rec-
ords.



V. APPLICATION

Applications for the analytical techniques presented in this report fall
into two broad categories: the design synthesis of optimized filamentary
structures, in which the structural properties of the filaments are utilized
to the fullest possible extent; and the study of specific problems arising in
the structural analysis of filamentary structures. The latter application is
of particular interest in the case of large elastic deformations observed in
pressure stabilized structures subject to external loads, and in the study of
the static stability of such structures.

In the treatment of these problems of analysis, the assumption may
be made that the filaments remain inextensional and completely compliant in
. bending, and that the matrix or liner material remains stress-free during
the deformation. With these assumptions, a point of departure for analysis
is found in the intrinsic properties of the filamentary structure, i.e., in the
properties which will not change during the deformation process. Such in-
trinsic properties are either topological or metric in nature.

Retention of intrinsic topological properties as they apply to the over-
all structural configuration will form, in general, the end points or con-
straints of possible deformation (i, e., a toroid will reamin a toroid through-
out the deformation). Intrinsic topological properties, as they apply to the
filamentary geometry, are of somewhat more subtle character and involve,
for instance, the number of turns of the filament around the structure, and
the periodicity of the turns per revolution. This characteristic is particu-
larly evident in the case-of the smooth toroid, where the number of filament
turns around the toroid necessary to complete a full revolution of the cen-
tral angle ¢ in the winding pattern constitutes an intrinsic property of the
filamentary structure.

Intrinsic metric properties are, according to the assumptions of inex-
tensional fibers stated above, the lengths of the filaments. Additional
intrinsic metric properties may be stated for specific problems, such as a
condition that cross-over points of differently oriented filament systems may
not slide with respect to each other (trellis-condition).

The problem of structural analysis of a given filamentary structure,
subject, for instance, to an external load thus reduces to finding related
structural configurations with appropriately identical intrinsic properties,
and with the required discontinuities at the locations of load application.

For the purpose of illustration, two examples for this type of analysis
are summarized here. The first example considers a structural element
consisting of a non-rotating (£2=0) bottle-shaped pressure vessel with me-
ridional windings (C=0) anchored at two circumferential rings (C=1) as
shown in the inset of Figure 13. This element can be considered as either
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representing the structural portion of a spheroidal rocket motor case, or
can be considered as an element of a ''corrugated' structural column.

Consider now this structure subject to an axial load P . The deformed
configuration will retain the length of the filament between the rings and the
circumferential length of the rings. Since the nature of the deformation is
such that axisymmetry is retained, the possible shapes of deformation can be
established by holding the filament length of the meridian and the radius of
the rings invariant, for a range of selected K-values, which in this case are
conveniently normalized for the invariant ring radius. Results of this pro-
cedure, in terms of normalized load-deformation characteristics and for an
arbitrarily assumed constant internal pressure are shown in Figure 13, in-
dicating the expected non-linear elastic behavior of the structure similar to
that studied in detail in Reference 8.

The second example considers a range of non-rotating pressurized to-
roids formed by two branches of a meridional winding pattern joining an outer
and inner equatorial ring, as shown in the inset of Figure 14. The toroids
are designed for parameter values of K=5 , C=0 , =0 in a condition
without externally applied loads. A range of designs is generated by varying
the intercept location of the two branches, or, in other terms, the radii r1
and r, of the outer and inner equatorial rings. These radii are related to

the ring cross sections (or number of filament turns n1 and n2 ) by the con-

dition that the stress level in the fibers forming the equatorial bands be equal
to the stress level in the fibers forming the meridional winding pattern (iso-
tensoid condition).

An axisymmetrically distributed and axial loading P is considered,
acting at the outer ring and reacted by an equal and opposite load applied
at the inner ring. The question considered here is that of initial spring rate
(i. e., the stiffness for small deformations from the unloaded equilibrium
configuration) as it is affected by the particular choice of the ring radii.and
related number of turns in the rings. The results of this investigation, based
upon intrinsically invariant filament length and assumption of invariant inter-
nal pressure,are shown in Figure 14, It will be observed that there exists a
critical parameter configuration at which the spring rate vanishes, indicative
of a state of marginal static stability of the structure., For negative spring
rates, a statically unstable structure can be identified, exhibiting a ''geo-
metrical' instability in the sense that only geometrical and no material prop-
erties enter into the mechanism causing instability.
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VI. CONCLUDING REMARKS

The filamentary structures considered in this report represent ideali-
zations of actual structures in several respects; the importance of each will
need to be assessed in specific applications in view of the individual case.
The idealizations selected were such that relatively straightforward analyt-
ical formulation for the pertinent geometrical characteristics of the fila-
mentary structures considered could be developed. These prove useful to
gain insight into the general nature of the problems in design and operation
of such structures.

In addition, the basic differential equations presented lend themselves
to considerable generalization including the case of non-uniform internal
pressure (of practical importance for rocket motors subject to distributed
inertia loads and for the design of inserts and endclosure attachments).
These problems can be readily solved by digital integration such as pre-
sented previously (Reference 3). The value of the analytical formulations
in this case is that of allowing a check for the computor programs, by test-
ing them on an idealized case for which the result can be readily verified
analytically, as well as by providing means of initializing the digital pro-
grams,

Idealizations that may be serious limitations in specific applications
rest in the basic concept of monotropic membrane arrays as representative
for the structure. Where matrix materials of significant stiffness are used,
the assumption that matrix materials will not contribute to the primary
stress system must be questioned. Also inherent in the concept of mono-
tropic membranes is the assumption of negligible wall thickness. For the
case of thick-walled pressure vessels, specifically in areas of polar buildup
due to cross-over of the winding pattern, a refined method somewhat remi-
niscent of a '"stress concentration'' analysis might be developed.

Finally, the case of deviations from axisymmetry remains to be stud-
ied from two points of view: the structure may originally be built with op-
erationally required deviations from axisymmetry (as for instance, in the
case of multiple nozzle and retro-ports in filament-wound solid propellant
rocket motors); or non-axisymmetric loading on originally axisymmetric
structures may cause deviations in the deformed state. A general approach
to such problems, using the technique of differential geometry, has been
outlined, but not implemented, in Reference 3. The mathematical difficul-
ties, at first sight, appear formidable, Digital techniques, while cumber-
some, may be developed to effectively solve critical problems in this area
in the future,

Astro Research Corporation
Santa Barbara, California
September 30, 1962
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APPENDIX A

PROPERTIES OF ROOTS x, AND x3

The roots x_ and x, are defined by equations (17) and repeated here

for convenience:

x, = __2_2__2. {H-“\/HZ+C2 (KZ-OZ)},

K - Q

2 2 2 2 2
o« o {ma/eed Wl ad)

where

H = K\/l-C2+Q-%-(K2-QZ)

In the following analysis, the parameters K and £ will be assumed to be
real, non-negative numbers, as required by their definitions as pressure and
centrifugal loading parmeters with positive internal pressure, positive mass,
and tensile filament forces. Also, the parameter C is limited to the range
0 s C sl according to its definition: C = sin BO

Consider first the case K > . Then H may be either positive or
negative. For H =0 , we must have X, Z2 0 (equality for H=0 , C=0 ;
hence also K - f1 = 4).

2
Also \/H + C (K~ - QZ) 2 |H| , which requires x; S 0 (equality for

= 0 only). Similarly for H20 , we must have x, <0 (equality for

3
H=0, C=0 ; hencealso K- Q = 4), and also

\/Hz+c2 (KZ-QZ) 2 H ,

2 0 (equality for C= 0 only). Hence we have:

which requires X,

Theorem A. For K> 2, X, 20 and %, £ 0 for all non-negative

values of K and 1.

Now consider the case K < {l. For this case H must be positive

(H > 0). Hence x3_> 0 , and since
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\/HZ+C2 (KZ-QZ) s H ,
we must have x, 2 0 (equality for C = 0 only). Moreover x, > x,

It remains only to show that Xy >1 forall K< Q. For C=0 , we can
write

H = (K+ ) [1+—‘11—(0-K)]

and
4 H 4

X, = =—————— = ]l4—=—— >1,

3 QZ . KZ Q-K
which holds for all K , O (K< Q) for C=0 . Now hold K and ({1 fixed
and vary C>0 . If x, <1 for some C (say cl ), then x, =1 for some

1 3 3

cC<C
Thus, it is sufficient to prove that Xg #1 forany C , K and § . Assume
x3 =1 ; this requires

[—‘3-2—2'-53 - H] =‘\/H7‘+CZ % - 0% ,

or by squaring

2 2

0 -Z-K -(QZ-KZ)H=CZ(KZ-QZ)
(Note that this squaring operation has removed the distinction between x
. 2
and X4 ). Since K# Q

%(QZ—KZ) -H = CZ

Substituting for H yields

o = c®.k\/1-c?

To determine whether this result corresponds to X, or X3 substitute it
back into their definitions, We obtain



4
’ 1- Y1-c%ex)?

The latter equation permits no values of x
completes the proof. Thus we have:

3 in the range 0 <x <4 , which

Theorem B. For K< § , xZZO s x3>x2 , and also x3>1 for

all non-negative values of K and {1 .
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Let the symbol

APPENDIX B
EVALUATION OF J-INTEGRALS

Jn(x) designate the integral

1 xn
7 - j X ax
n(x) y
x
where
2 A2
y = (K™-87)(1-x)(x-x_){x-x,)
2 3
The cases to be considered are n=0 , 1 , and -1

Consider the variable

sinzpl

In terms of lbl , we find

y = ‘\/(;2-02)(1?}{3)(1-}(2) sinlblcos{bl\/:(

Then denoting

k1 =
we find
J =
o
or
J =
o

where F (¥, k) is the
erence 1),

l-x2 2
} sin ¢
1-x3 1

wl
2 J' dy
\/(Kz'nz)(l-x?’) ° l-kl2 sinzlb

2

\ﬂKZ-QZ)u-x3)

incomplete elliptic integral of first kind {(Ref-

F(¢lnk1) ’

(B-1)

(B-2)

(B-3)

(B-4)
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Similarly ’bl . 2
) 5 -(l-xz) sin ¥
Iy © j ¥
2 A2 2 .2
\/ (K-8 )(1-x3) o V l-k1 sin" ¢
) 2 .2
_ > J, 1 x?’-!-(l-x3)[1--k1 sin Y] a
<\/(vK2-QZ)(1-x3) ° l-klzsinzzb
or

3 [x, F, k) + Q-x) E@, k)] , (B-5)

- 2
1
‘\/(KZ-02><1-x3>

where E(¥,k) is the incomplete elliptic integral of second kind.
Finally

¥

Tt 222 j :¢,/ > 2.
*\ﬁx -0 )(1-x3) o [1-(1-x2) sin zb] 1-k,"sin )

1

or

J = I (‘b ,azuk) ) (B'é)

2 .
-1 1’% %
\/(Kz-nzm-xS)

where H(!bl ,alz ,k) is the incomplete elliptic integral of third kind,
and

a = 1-x, . (B-7)

These equations are in a form suitable for the two cases K> ,

x3<x2<x<1 , and K<Q , l<x<x2<x3 . For the remaining

two cases, an alternate form of these integrals is required.

Consider now the variable

sinlﬁz (B-8)
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Then in terms of l,bz , Y becomes

x_ -1
2 A2 . 2 . 2
y = \\/(K -0 )(xz-x3)(x2-1) sm{bz cos{bz\% - T sin l,bz
2 3
Then denoting
x_ -1
k = ’
2 xz-x3
we find
m2
Jo - -2 J dy '
2 A2 ¥ .\/ 2 .2
\/(K -Q )(xz-x3) 2 1 k2 sin ¥
or

[Fa) - Fb, k)], (B-9)

- . 2
[e]
\/(KZ-QZ)(XZ-X3)

where F (k) is the complete elliptic integral of the first kind.

Similarly
-2 Iﬂ/z X, + (xz-x3)[1-k22 sinzll)]

J = dlp ’

1 2 ~2 2 2

_\/(7K - )(xz-x3) lbz l-k2 sin ¢
or
(B-10)
2

Sl folrog -ra,p] e gm0y - 20y ]

2 A2
\/(K -G )(xz-x3)

where E (k) is the complete elliptic integral of second kind.
Finally

_ » jv/z ap
-1 2 A2 x,-1 2.~ .2 .2 ’
\/(K -0 )(xz-x3) d’z X, [1 - x, sin #)] l-kZ sin ¥

or

J




_ 2 2 2
= — [m@,?. ) - ne,,0,%,1)] (B-11)
xz\/(K -0 )(xz-x3)

where H(Otz, k) is the complete elliptic integral of third kind,

and % -1

o = . (B-12)

The incomplete elliptic integrals of first, second, and third kind
are tabulated functions (see References 7 and 9 for example), The com-
plete elliptic integral of third kind can also be evaluated in terms of
Heuman's Lambda Function, a tabulated function.

Consider Case A: K> Q, x3 < x2 <x<1 . Then we have
2 2 2
> <
k1 0 and k1 Otl <1
Case B: K> §, x3<1<x<x2 . Then
2 2 2
> <o < .
k2 0 and k2 5 1

For both Case A and B, from Reference 4, No. 413,01, we have

ToeA (§,k)
Me?,x) = 2 X (B-13)

2 \/(az-kz)(l-az)

2 .2
o -
Here A is Heuman's Lambda Function, and sin§ = &k
o 2 2
o (l-k )
Case C: K<, x,<x<1<x, . Then a22<0
Case D: K<9,1<x<x2<x3 . Then a12<o

For both Case C and D, from Reference 4, No. 410.01, we have

2
kz F (k) To Ao(n,k)

2 2
K°-a 2\/;2(1_0[2)(&2_1(2)

H

l'I(ozZ, k) s (B-14)

with sin?f =



APPENDIX C

CONDITION FOR MERIDIAN CURVE OF CUSP

Denote by xo the value of x for zero slope, and recall that x, is

2
the value of x for infinite slope. Then the cusp condition is Xg = %X,
From equation (14) (with pf = 0)

2 2
xg = - \/1-€

while x, is given by equation (17). Hence the condition X = %, is given by

[.&;:.Ez (1 --%-\/1-0‘7‘)- H]Z -t - c?(a®- k%

2 2
Squaring, collecting terms, and dividing out (8 - K) , we are left with
the expression

k% (1- Q)+ 0% (1-c%) - (k2 + 92-43)23'\/1-02 =0,

2
which is a quadratic in either € or 1-C . As a quadraticin O , we

have
& (K Z 2 k? 4
<_2°V1'C xo>+nK xo'T(‘ﬁ'Z'on): 0

By the quadratic formula

X
a - . Kz{li' Hz;-cz(l-;\/l-cz)}.
\/1-c 1-=\/1-C

To have £ >0 we take the lower sign. Rewriting the radicand we obtain
finally

1]
TR
Q

[y8]
Q
)
[\N)
Q
[\%)
[a—y
1}
Q
o
1
[
—

In terms of x
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Figure 6.
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Figure 9. Test Setup, Rotating Chain, Time Exposure.

Figure 10. Rotating Chain, Flash Exposure.



Figure 11. Experiment- Rotating Chain, C = .5, =
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